Nucleocytoplasmic Gynodioecy

Show more

References

[1] E. Caspari, S. Watson and W. Smith, “The Influence of Cytoplasmic Pollen Sterility on Gene Exchange between Population,” Genetics, Vol. 53, 1966, pp. 741-746.

http://www.genetics.org/content/53/4/741.full.pdf

[2] D. Charlesworth and F.R. Ganders, “The Population Genetics of Gynodioecy with Cytoplasmic-Genic Male-Sterility,” Heredity, Vol. 43, 1979, pp. 213-218.

http://dx.doi.org/10.1038/hdy.1979.76

[3] G. S. Watson and E. Caspari, “The Behavior of Cytoplasmic Pollen Sterility in Populations,” Evolution, Vol. 14, No. 1, 1960, pp. 56-63.

http://dx.doi.org/10.2307/2405922

[4] M. F. Bailey, L. F. Delph and C. M. Lively, “Modelling Gynodioecy: Novel Scenarios for Maintaining Polymorphism,” The American Naturalist, Vol. 161, No. 5, 2003, pp. 762-776.

http://dx.doi.org/10.1086/374803

[5] M. Dufay, P. Touzet, S. Maurice and J. Cuguen, “Modelling the Maintenance of Male-Fertile Cytoplasm in a Gynodioecious Population,” Heredity, Vol. 99, 2007, pp. 349-356.

http://dx.doi.org/10.1038/sj.hdy.6801009

[6] P. H. Gouyon, F. Vichot and J. M. M. van Damme, “Nuclear-Cytoplasmic Male Sterility: Single-Point Equilibria versus Limit Cycles,” The American Naturalist, Vol. 134, No. 4, 1991, pp. 498-513.

http://www.jstor.org/discover/10.2307/2462377?uid=3738664uid=2129uid=2uid=70uid=4sid=21102745687371

[7] R. Hartshorne, “Algebraic Geometry,” In: Graduate Texts in Mathematics, Vol. 52, Springer, New York, 1977.

[8] D. R. Grayson and M. E. Stillman, “Macaulay2, a Software System for Research in Algebraic Geometry.”

http://www.math.uiuc.edu/Macaulay2

[9] X. Delannay, P. H. Gouyon and G. Valdeyron, “Mathematical Study of the Evolution of Gynodioecy with Cytoplasmic Inheritance under the Effect of a Nuclear Restorer Gene,” Genetics, Vol. 99, 1981, pp. 169-181.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214488/

[10] M. D. Ross and B. S. Weir, “Maintenance of Male Sterility in Plant Populations III. Mixed Selfing and Random Mating,” Heredity, Vol. 35, 1975, pp. 21-29.

http://dx.doi.org/10.1038/hdy.1975.64

[11] K. E. Holsinger, M. W. Feldman and F. B. Christiansen, “The Evolution of Self-Fertilization in Plants,” The American Naturalist, Vol. 124, 1984, pp. 446-453.

http://www.jstor.org/discover/10.2307/2461472?uid=3738664uid=2129uid=2uid=70uid=4sid=21102745754551

[12] J. A. Vargas and R. F. del Castillo, “Nuclear Androdioecy and Gynodioecy,” Journal of Mathematical Biology, Vol. 47, No. 3, 2003, pp. 199-221.

http://dx.doi.org/10.1007/s00285-003-0200-3

[13] R. W. Cruden, “Pollen-Ovule Ratios: A Conservative Indicator of Breeding Systems in Flowering Plants,” Evolution, Vol. 31, 1977, pp. 32-46.

http://www.jstor.org/discover/10.2307/2407542?uid=3738664uid=2129uid=2uid=70uid=4sid=21102745773421

[14] C. Damgaard and R. J. Abbott, “Positive Correlations between Selfing Rate and Pollen-Ovule Ratio within Plant Populations,” Evolution, Vol. 49, 1995, pp. 214-217.

http://www.jstor.org/discover/10.2307/2410307?uid=3738664uid=2129uid=2uid=70uid=4sid=21102745773421

[15] P. Holgate, “Selfing in Genetic Algebras,” Journal of Mathematical Biology, Vol. 6, No. 2, 1978, pp. 197-206.

http://dx.doi.org/10.1007/BF02450789

[16] M. Hirsch and S. Smale, “Differential Equations, Dynamical Systems and Linear Algebra,” Academic Press, New York, 1974.